
COMP-SCI 396

Lecture 14: Algorithmic Bias



Do algorithms “discriminate”?

Algorithmic scoring guides decision-making in high stakes contexts:

who should receive bail

who should receive a medical treatment

who should receive a loan

who should be considered for a job

Much recent attention on how an algorithm’s errors compare
across social groups, and whether these errors are systematically
borne by one group.



Example: Predicting Recidivism

Highly publicized article in 2016 by ProPublica

Algorithmic prediction tool mislabelled non-white defendants
as future criminals twice as often as white defendants.



Example: Predicting Health Risks

Recent article in Science

Among all patients classified as in need of high-risk health
management/support, white individuals had 26.3% fewer
chronic illnesses (i.e., were less sick)



Example: Google Translate

“Biased” translations from languages without gendered pronouns
to languages with gendered pronouns.



Why Might Algorithms Treat Groups Differently?

Different populations have different properties:

X1
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Why Might Algorithms Treat Groups Differently?

Endogeneity/selection:

Training data includes historical biases, e.g.

label is not “committed a crime” but “was arrested”
potentially less data about minority groups

Data collection feedback loops / selective data observation

only observe “committed a crime” if the subject was released
find more crimes at locations where more police officers are
deployed

Other reasons?



Some Hard Questions

1 What does it mean for an algorithm to treat groups
“unfairly?”

2 What are the relevant groups over which fairness criteria
should be defined?

3 Is the “group” the right unit, or the individual?

4 How to trade off between fairness and accuracy?

5 What kind of features should we permit algorithms access to:
should group labels be forbidden?
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1 What does it mean for an algorithm to treat groups
“unfairly?”

2 What are the relevant groups over which fairness criteria
should be defined?

3 Is the “group” the right unit, or the individual?

4 How to trade off between fairness and accuracy?

5 What kind of features should we permit algorithms access to:
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Framework

Each individual in the population is described by

a feature vector X = (X1, . . . ,Xn) belonging to X
a group membership G ∈ {b, r}
a type Y ∈ {0, 1} (will commit another crime versus won’t)

Formally, (X ,G ,Y ) ∼ P is a random vector.



Example

Group (G) Age (X1) Freq. Irreg. Heartbeats (X2) Arrythmia (Y )

r 50 13% 1
b 32 7% 0
b 80 20% 1
r 78 28 % 1
b 39 15% 0
b 50 24% 0



The Distribution P

The distribution P can reflect a prior belief, or the empirical
distribution of observed data.

May be “asymmetries” depending on how the data was collected.

e.g., could be that there is very little representation of group-r
observations in the observed data

or, could be that groups r and b are equally represented, but
the observed data is of higher quality for group r (more noise
in the data for group b)

or, there may be certain correlations between group and other
traits (e.g., if group r individuals are only observed if they
have some other trait)
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Algorithmic Scoring Rule

An algorithmic scoring rule is any function S : X → {0, 1}.

This maps observed features into a prediction of Y .

For example,

we might map an individual’s medical profile into an
assessment of whether they are at high or low risk of a
particular illness

we might map a defendant’s background and record into a
prediction of whether they are at high or low risk of criminial
reoffense

we might map a job applicant’s record and interview
outcomes into a prediction of whether they are likely or
unlikely to perform well on the job



False Positives and False Negatives

Every scoring rule S can be identified with a table like this:

S = 0 S = 1
Y = 0 TN FP
Y = 1 FN TP

where:

TN = True Negative

FP = False Positive

FN = False Negative

TP = True Positive



What Makes a Scoring Rule “Fair”?



Statistical Parity

Definition

Say that S satisfies statistical parity if

P(S = 1 | G = g) = P(S = 1) for both groups g

This says that the probability of being scored 1 is the same for
members of both groups

Example violation: 40% of group r individuals receive score 1
and 80% of group b individuals receive score 1



Let’s Discuss

This fairness criterion doesn’t take into account the true type
Y at all

So it makes more sense when everyone prefers the outcome
(e.g., a job or a loan), rather than something when the value
of the outcome depends on on your type (e.g., only want to
get medical procedures that you actually need it)

If 40% of group r individuals need a given medical treatment
but no one in group b needs it, statistical parity is probably
not desirable

Also has the unfortunate property that it can be satisfied in a
bunch of undesirable ways: e.g., put everyone in jail.

Incentive problems?
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Conditional Statistical Parity

Definition

Say that S satisfies conditional statistical parity if

P(S = 1 | G = g ,X = x) = P(S = 1 | X = x)

for any g ∈ {r , b} and x ∈ X .

If two individuals have the same features but different group
memberships, their probability of being scored 1 is the same

Example violation: fixing a given resume, the probability of
being hired is 40% if the individual belongs to group r and
80% if the individual belongs to group b







Let’s Discuss

What this definition means depends a lot on what the features
X are.

If we have a lot of fine-grained information on individuals,
then each unique realization of X might identify a single
person, making this fairness definition vacuous.

Could generalize to a selected subset of features, or put a
similarity metric on X and require individuals with similar
features to have similar scores.



Let’s Discuss

But could also be that (say, because of omitted features) the
same realization of X carries different meanings for individuals
in the two groups.

e.g., suppose that the groups are low- and high- income
categories, X is frequency of hospital visits, Y is whether you
have a serious chronic illness.

Could be that low-income individuals have a harder time
getting to sick leave to visit the hospital, so conditional on the
same Y they visit the hospital less.

In this case, might not want to insist on similar treatments for
individuals with the same X ’s across the two groups.



Let’s Discuss

Previous definition asked for similar treatment of individuals
with the same feature vectors X

Another idea is to ask for similar treatment of individuals with
the same type Y



Equality of False Positive Rates

S = 0 S = 1
Y = 0 TN FP
Y = 1 FN TP

Definition

Say that S has equal false positive rates if

P(S = 1 | Y = 0,G = b) = P(S = 1 | Y = 0,G = r)

This says that the probability that an individual with Y = 0 is
wrongly classified as S = 1 is the same within each group

Example violation: 40% of innocent group-b defendants are
wrongly scored as high-risk of criminal offense, while 80% of
innocent group-r defendants are wrongly scored in this way.



Equality of TNR and FPR

S = 0 S = 1
Y = 0 TN FP
Y = 1 FN TP

Since this implies (and is implied by) equality of the true negative
rate, we can equivalently say

S ⊥⊥ G |Y = 0

e.g., conditional on not committing a crime in the future,
probability of being assessed as high-risk of committing a crime is
the same regardless of group membership.



Equality in False Negatives

Definition

Say that S has equal false negative rates if

P(S = 0 | Y = 1,G = b) = P(S = 0 | Y = 1,G = r)

This says that the probability that an individual with Y = 1 is
wrongly classified as S = 0 is the same within each group

Example violation: 40% of group-b people who need intensive
medical care are wrongly scored as “low-risk” while 80% of
group-b individuals who need intensive medical care are
wrongly scored in this way.



Equality of TPR and FNR

S = 0 S = 1
Y = 0 TN FP
Y = 1 FN TP

Since this implies (and is implied by) equality of the true positive
rate, we can equivalently say

S ⊥⊥ G |Y = 1

e.g., conditional on repaying the loan, then the probability of being
granted the loan is the same regardless of group membership.



Equalized Odds

S = 0 S = 1
Y = 0 TN FP
Y = 1 FN TP

We could also ask for all of the four cells to be the same.

Definition

Say that S satisfies equalized odds if

EY

 ES(S | G = r ,Y )− ES(S | G = b,Y )︸ ︷︷ ︸
difference with which type Y individuals are treated across groups

 = 0



Let’s Discuss

Two groups can have equal TNR, FPR, TPR, FNR, and still
have rather different overall accuracy rates

e.g., suppose in both groups we have

S = 0 S = 1
Y = 0 1/2 1/2
Y = 1 0 1

but 90% of individuals in group r have Y = 1 while 10% of
individuals in group b have Y = 0

Then the overall error rate for group r is

0.1 · 1/2 + 0.9 · 0 = 0.05

while the overall error rate for group b is

0.9 · 1/2 + 0.1 · 0 = 0.45.

The base rate of Y in the two groups is not a factor.



Let’s Discuss

Two groups can have equal TNR, FPR, TPR, FNR, and still
have rather different overall accuracy rates

e.g., suppose in both groups we have

S = 0 S = 1
Y = 0 1/2 1/2
Y = 1 0 1

but 90% of individuals in group r have Y = 1 while 10% of
individuals in group b have Y = 0

Then the overall error rate for group r is

0.1 · 1/2 + 0.9 · 0 = 0.05

while the overall error rate for group b is

0.9 · 1/2 + 0.1 · 0 = 0.45.

The base rate of Y in the two groups is not a factor.



Let’s Discuss

Two groups can have equal TNR, FPR, TPR, FNR, and still
have rather different overall accuracy rates

e.g., suppose in both groups we have

S = 0 S = 1
Y = 0 1/2 1/2
Y = 1 0 1

but 90% of individuals in group r have Y = 1 while 10% of
individuals in group b have Y = 0

Then the overall error rate for group r is

0.1 · 1/2 + 0.9 · 0 = 0.05

while the overall error rate for group b is

0.9 · 1/2 + 0.1 · 0 = 0.45.

The base rate of Y in the two groups is not a factor.



Let’s Discuss

Next set of fairness criteria instead condition on the score S

Instead of asking for the distribution of S to be similar for
individuals with similar Y , ask that the distribution of Y is
similar for individuals with similar S



Those Scored S = 1

Definition

S satisfies equality of positive predictive values if

P(Y = 1 | S = 1,G = r) = P(Y = 1 | S = 1,G = b)

Example violation: 40% of group-b loan applicants who are scored as
“creditworthy” in fact pay back their loan, while 80% of group-r loan
applicants scored as “creditworthy” pay back their loan.

This implies:

Definition

S satisfies equality of false discovery rates if

P(Y = 0 | S = 1,G = r) = P(Y = 0 | S = 1,G = b)

Example violation: 40% of group-b job applicants who are hired perform
poorly at the job, while 80% of group-r job applicants who are hired
perform poorly at the job.
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Definition

S satisfies equality of negative predictive values if

P(Y = 0 | S = 0,G = r) = P(Y = 0 | S = 0,G = b)

Example violation: 40% of group-b loan applicants who are scored as
“not creditworthy” in fact don’t pay back their loan, while 80% of
group-r loan applicants scored as “not creditworthy” don’t.

This implies:

Definition

S satisfies equality of false omission rates if

P(Y = 1 | S = 0,G = r) = P(Y = 1 | S = 0,G = b)

Example violation: 40% of group-b job applicants who are not hired
would have performed will at the job, while 80% of group-r job
applicants who are not hired would have performed well.
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Calibration

Combining these...

Definition (Calibrated)

A score S is calibrated if for each s ∈ {0, 1},

P(Y = 1 | S = s,G = b) = P(Y = 1 | S = s,G = r)

Fixing an outcome (e.g., being hired or not being hired), the two
groups look the same in distribution.



Let’s Discuss

This is a lot of criteria, and I won’t blame you if your head
started hurting a while back.

Why does this matter? These all sound reasonable and kind
of similar, don’t many of these criteria imply one another?

It’s actually the opposite.
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Recall This Incident

ProPublica showed that the algorithmic scoring rule had a false
positive rate that was twice as high for one group as for another,
and thus wasn’t fair.

The company that made the algorithmic scoring responded that
they actually made sure to make the algorithm fair, by ensuring
calibration.

Researchers subsequently showed that these two notions of fairness are
fundamentally incompatible with one another:

Outside of trivial cases, an algorithm cannot both satisfy equality of
false positive rates and also be calibrated!
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Impossibility Result

For each group g , define pg = P(Y = 1 | G = g) to be the base
rate of Y = 1 in each group.

Proposition (Chouldechova, 2016; Kleinberg et al, 2016)

Suppose pr 6= pb. Then no scoring rule S can simultaneously
satisfy calibration, equal false positive rates, and equal false
negative rates.



Proof

Choose either group g , and define pg = P(Y = 1 | G = g),

FPg = P(S = 1 | Y = 0,G = g)

FNg = P(S = 0 | Y = 1,G = g)

PPVg = P(Y = 1 | S = 1,G = g)

Lemma

FPg =
pg

1−pg ×
1−PPVg

PPVg
× (1− FNg )

Proof. Expanding the statement, we have

P(S = 1 | Y = 0,G = g) =
P(Y = 1 | G = g)

P(Y = 0 | G = g)

× P(Y = 0 | S = 1,G = g)

P(Y = 1 | S = 1,G = g)
× P(S = 1 | Y = 1,G = g)
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Proof

We’ve shown

FPr =
pr

1− pr
× 1− PPVr

PPVr
× (1− FNr )

FPb =
pb

1− pb
× 1− PPVb

PPVb
× (1− FNb)

Thus if

FPr = FPb

PPVr = PPVb

FNr = FNb

it must follow that pr = pb!

i.e., if calibration, equal false positive rates, and equal false
negative rates are all satisfied, the base rate of Y = 1 must be
identical across groups.
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Proof

Converse:

If the base rate of Y = 1 is not identical, then at least one of
calibration, equal false positive rates, and equal false negative rates
must fail.



Fairness Gerrymandering

Previous definition was defined given a primitive set of groups.
But what is the relevant set of groups?

Kearns et al. (2008) on “fairness gerrymandering”: Suppose
each individual is equally likely to be red or blue, and square
or triangle.

There are four protected groups: “red,” “blue,” “square,” and
“triangle.”

An ML classifier has false positive rates given as follows:
square triangle

red 1 0
blue 0 1

Then false positive rates across the protected groups are the
same (50%), but clearly this is violated if we look at group
conjunctions.
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Individual Fairness

Another approach is to define fairness over individuals instead
of groups.

Dwork et al. (2012): Fix a metric d on the space of
covariates X . Let A be a space of actions/outcomes. Fix a
metric D on the space of measures ∆(A).

Definition

A mapping M : X → ∆(A) satisfies the (D, d)-Lipschitz property if

D(M(x),M(x ′)) ≤ d(x , x ′) ∀x , x ′ ∈ X
i.e., similar individuals should receive similar distributions over
outcomes.

But this essentially kicks the can down to the question of
what is d . (Is similarity in group membership part of the
definition of d?)
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