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Introduction

in many learning problems, don’t have access to information
about exactly what you want to know

instead aggregate related information

e.g. suppose a hotel chain wants to forecast demand for a
new location in Puerto Rico

can’t directly learn about this, but can learn about different
components:

website traffic to the Puerto Rico tourism bureau provides
estimate of tourism travel
Google search data for local conference venues provides
estimate of business travel

improve forecasting by aggregating this data

how to acquire data over time, given limited resources?



Our Model

decision-maker (DM) seeks to learn Gaussian state

(volume of
travel to hypothetical new location in Puerto Rico)

state is a linear combination of unknown attributes

(vacation
travel, business travel, etc.)

attributes are potentially correlated

(vacation travel from US,
vacation travel from Mexico)

DM has access to a diffusion process about each attribute,
allocates attention across them

(e.g. employee hours)

at chosen time, stops information acquisition and takes action

(whether or not to open new location in Puerto Rico)
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Preview of Main Result

under assumption on prior belief (over attributes), optimal
information acquisition is “simple”

DM initially focuses all attention on one attribute

progressively adds in new attributes

constant attention allocation during each stage

strategy is history-independent

and “robust”:

optimal across large class of payoff/cost specifications

applications to: binary choice, competing information providers
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Plan for Talk

1 Model

2 Two Attributes

3 Many Attributes

4 Application: Binary Choice

5 Application: Competing Information Providers



Informational Environment

unknown attributes θ = (θ1, . . . , θK ) ∼ N (µ,Σ)

payoff-relevant state ω =
∑K

i=1 αiθi with each αi > 0

data sources diffusion process Xi for each θi



Attention Allocation

continuous time t ∈ R+

allocate unit of attention across attributes at each time t

(βt1, . . . , β
t
K ) where

∑K
i=1 β

t
i = 1

attention choices influence the diffusion processes via

dX t
i = βti · θi · dt +

√
βti · dB

t
i

where Bi are independent standard Brownian motions.

DM observes complete paths of each process: at each time t

the history is
{
X≤ti

}K

i=1



Decision Problem

DM chooses

information acquisition strategy S : map from histories into an
attention vector

stopping rule τ : map from history into decision of whether to
stop sampling

Criterion:

max
S,τ

E
[
max
a

E[u(a, ω) | Fτ ]− c(τ)
]

for some arbitrary positive increasing cost function c .



Comments on Problem

results will characterize optimal information acquisition only

in general, S and τ would have to be determined jointly

we show that they can be separated under a condition on the
prior belief

this is not a multi-armed bandit problem

in MAB, actions play the dual role of influencing the evolution
of beliefs and determining flow payoffs

here they are separated

so information acquisition decisions are driven by learning
concerns exclusively
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Related Literature

Dynamic Learning from Fixed Set of Signals:
Moscarini-Smith (’01), Fudenberg et al. (’18), Che-Mierendorff (’19), Mayskaya
(’19)

−→ we allow many signals with flexible correlation

Rational Inattention and Flexible Information Acquisition:
Steiner et al. (’09), Hébert-Woodford (’18), Zhong (’18)

−→ our signals and information cost are “fixed”

Statistics:
multi-armed bandits; optimal experiment design; comparison of experiments.

−→ our model closest to recent work on “best-arm identification”;

solves “identification” between two correlated Gaussian arms
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Two Sources (K = 2)



Two Sources

two unknown attributes(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

access to two Brownian motions

agent seeks to learn ω = α1θ1 + α2θ2, where each αi > 0.



Key Condition on Prior Beliefs

define y1 = α1Σ11 + α2Σ12 and y2 = α1Σ21 + α2Σ22.

Assumption

The prior covariance matrix satisfies y1 + y2 ≥ 0.

loosely, this requires the two attributes to be not too negatively
correlated

always satisfied if α1 = α2

−→ agent wants to learn ω = θ1 + θ2

or Σ12 = Σ21 ≥ 0
−→ attributes are positively correlated

or Σ11 = Σ22

−→ same initial uncertainty about the two attributes
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Optimal Attention Allocation Strategy

Theorem

Wlog let y1 ≥ y2. Define

t1 =
y1 − y2

α2 det(Σ)
.

Under the previous assumption, the optimal attention strategy has
two stages:

1 At times t ≤ t1, DM optimally attends only to attribute 1.

2 At times t > t1, DM allocates attention in the constant
fraction

(βt1, β
t
2) =

(
α1

α1 + α2
,

α2

α1 + α2

)
.
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Example 1: Independent Attributes

unknown attributes(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
6 0
0 1

))
want to learn θ1 + θ2

then optimally:

phase 1: put all attention on learning about θ1

at time t = 5/6, posterior covariance matrix is

(
1 0
0 1

)
after, split attention equally



Example 2: Correlated Attributes

unknown attributes(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
6 2
2 1

))
want to learn θ1 + θ2

then optimally:

phase 1: put all attention on learning about θ1

at t = 5/2, posterior covariance is

(
3/8 1/8
1/8 3/8

)
after, split attention equally



Example 2: Unequal Payoff Weights

unknown attributes(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
2 1
1 1

))
want to learn θ1 + 2θ2

then optimally:

phase 1: put all attention on learning about θ1

at t = 3/2, posterior covariance is

(
3/5 1/5
1/5 2/5

)
after, split attention in the vector (1/3, 2/3)



Interpretation of Strategy

Stage 1

Put all attention on learning about attribute 1, where by
assumption: y1 = α1Σ11 + α2Σ12 ≥ α1Σ21 + α2Σ22 = y2.

suppose equal payoff weights (α1 = α2) or independent attributes
(Σ12 = Σ21 = 0)

above expression reduces to Σ11 ≥ Σ22

direct comparison of which attribute the DM is initially more
uncertain about

focus on the attribute with greater initial uncertainty



Interpretation of Strategy

Stage 1

Put all attention on learning about attribute 1, where by
assumption: α1Σ11 + α2Σ12 ≥ α1Σ21 + α2Σ22.

with unequal payoff weights, want to “re-weight” uncertainty in
proportion to those weights:

higher α1 ⇒ greater value to learning about attribute 1

with correlation:

learning about attribute 1 has value also in teaching about
attribute 2 (and vice versa)



Interpretation of Strategy

eventually DM has equal (payoff-reweighted) uncertainty
about the two attributes

Stage 2

Devote attention in constant fraction

(
α1

α1 + α2
,

α2

α1 + α2

)
.

these weights produce an unbiased signal about ω:

α1

α1 + α2
· θ1 +

α2

α1 + α2
· θ2 =

1

α1 + α2
· ω

efficient aggregation of information in “prior-free” sense

acquisition of signals in this mixture maintains equivalence of
marginal values
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Conceptual Takeaways

optimal information acquisition is “simple”:

attention allocations do not depend on the history of signal
realizations

DM can map out and implement a deterministic plan for
information acquisition from time 0

note: expect stopping time and optimal action a to depend on
signal realizations

and “robust”:

strategy does not depend on payoff function u(a, ω)

note: important that the payoff-relevant state does not change



Practical Takeaways

closed-form expressions for optimal information acquisition strategy
in this environment

can use this to:

characterize exact information acquisition strategy

study various comparative statics (example later)

simplify larger problems where information acquisition is not
the direct object of interest (example later)



General K



Generalized Condition on Prior

Assumption

The prior covariance matrix satisfies

|Σij | ≤
1

2K − 3
· Σii , ∀i 6= j .

limits size of covariances (relative to variances)

for case of K = 2, reduces to |Σij | ≤ Σii (covariances smaller
than variances), which implies previous condition for K = 2

condition becomes more stringent for larger K
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Optimal Information Acquisition Strategy

Theorem

Under the preceding assumption, there are (up to) K stages of
information acquisition, identified with the increasing times

0 = t0 ≤ t1 ≤ · · · ≤ tK−1 < tK = +∞

and nested sets

∅ = B0 ( B1 ⊂ · · ·BK−1 ( BK = {1, . . . ,K}.

At each stage [tk−1, tk):

the optimal attention level is constant

and supported on the sources in Bk .

At the final stage, attention is proportional to the weight vector α.



Optimal Information Acquisition Strategy

Theorem

Under the preceding assumption, there are (up to) K stages of
information acquisition, identified with the increasing times

0 = t0 ≤ t1 ≤ · · · ≤ tK−1 < tK = +∞

and nested sets

∅ = B0 ( B1 ⊂ · · ·BK−1 ( BK = {1, . . . ,K}.

At each stage [tk−1, tk):

the optimal attention level is constant

and supported on the sources in Bk .

At the final stage, attention is proportional to the weight vector α.



Optimal Information Acquisition Strategy

Theorem

Under the preceding assumption, there are (up to) K stages of
information acquisition, identified with the increasing times

0 = t0 ≤ t1 ≤ · · · ≤ tK−1 < tK = +∞

and nested sets

∅ = B0 ( B1 ⊂ · · ·BK−1 ( BK = {1, . . . ,K}.

At each stage [tk−1, tk):

the optimal attention level is constant

and supported on the sources in Bk .

At the final stage, attention is proportional to the weight vector α.



Example

unknown attributes θ1

θ2

θ3

 ∼ N
 µ1

µ2

µ3

 ,

 4 0 0
0 4 −1
0 −1 3


want to learn ω = θ1 + θ2 + θ3

then optimally:

phase 1: put all attention on learning about θ1

at t = 1/12, marginal values of θ1 and θ2 have equalized

phase 2: divide attention between θ1 and θ2 in constant
mixture (4/7, 3/7)

at t = 13/44, all three marginal values are the same

phase 3: split attention equally across sources
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Some Properties of the Optimal Strategy

step-like structure:

once DM starts acquiring information from a source, always
acquires information from that source
progressively adds in new sources

at each stage, information acquisition is constant

the times tk and sets Bk are “history-independent”: can be
mapped out from t = 0

strategy holds for all payoff functions u(a, ω)



Proof Sketch 1/4: Preliminaries

at every time t, past attention levels integrate to a cumulated
attention vector q(t) = (q1(t), . . . , qK (t))

describes how much attention has been paid to each attribute

let V (q(t)) be the posterior variance of ω at time t

warm-up: suppose there is a fixed stopping time T

q(T ) should minimize V (q) among all vectors q that allocate
T units of attention (Hansen-Torgensen)

(note: “order” doesn’t matter, just need to integrate to best
cumulated attention vector at time T )
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Proof Sketch 2/4: Uniform Optimality

Definition

For each time t, define the t-optimal attention vector

n(t) := argmin
q : ‖q‖1=t

V (q)

suppose it were possible to achieve n(t) at every t
=⇒ minimize posterior variance at every time t

call such a strategy is uniformly optimal

if a uniformly optimal strategy exists, it is optimal for all
payoff criteria (Greenshtein)

key question is whether a uniformly optimal strategy exists.



Proof Sketch 3/4: Monotonicity of n(t)

sufficient and necessary condition: n(t) weakly increases in t
in all coordinates.

in this case, optimal attention levels βt are simply the time
derivatives of n(t)

when might this fail? example

strong complementarity/substitutability across signals
locally best reductions in variance need not be best given
opportunity to acquire information on a larger time interval

work with the Hessian of the posterior variance function V

condition on prior limits extent to which learning about
attribute i affects value to attribute j (size of cross-partial)



Proof Sketch (4/4): Step Structure

at each stage k , agent optimally divides attention among the
k attributes in Bk

specific mixture of information maintains equivalence of
marginal values of those k attributes

reduces the marginal value of each of the k attributes

eventually, some new attribute will have the same marginal
value as the first k attributes

at this point the agent expands his observation set to include
that new attribute

repeat reasoning above



What Can We Say for Arbitrary Priors?

main result holds for a set of prior beliefs (characterized by
the assumption)

suppose DM has a prior outside of this set

under optimal sampling, his posterior belief will eventually
enter that set

at that point the characterization again applies, so e.g.:

Corollary

Starting from any prior belief, the optimal information acquisition
strategy is eventually a constant attention level proportional to the
weight vector α.



Application 1:

Binary Choice



Binary Choice

literature beginning with drift-diffusion model (Ratcliff, 1978)

two goods with unknown payoffs θ1 and −θ2

agent can devote effort towards learning about these payoffs
before making his decision

DDM: agent’s prior is supported on two values θL < θH ,
uncertainty is only over which good is better

Fudenberg, Strack, and Strzalecki (2016):
“uncertain-difference” DDM with (θ1,−θ2) ∼ N (µ,Σ)

result from FSS: assume Σ = I , then optimal attention
choices constant at (1/2, 1/2)



Binary Choice

this problem is nested in our setting as case of α1 = α2 = 1
(given which our characterization holds for all priors)

Corollary

Starting from any prior with Σ11 ≥ Σ22, the DM first attends to
attribute 1 exclusively, then switches to equal attention at time

t1 =
Σ11 − Σ22

det(Σ)
.

generalizes the FSS result:

allows for correlation and asymmetry between unknown payoffs
applies “off-path” as well

can use to derive comparative statics
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Comparative Static in Initial Uncertainty

e.g. how does more initial uncertainty about an attribute affect the
time path of attention?

Corollary

Suppose Σ11 > Σ22 (more initial uncertainty about attribute 1).

1 If |Σ12| < Σ22, increase in Σ11 leads to weakly higher
attention to attribute 1 at every time.

2 Otherwise, increase in Σ11 leads to uniformly lower attention.

increasing initial uncertainty about attribute 1 changes the
“switch point” between stages 1 and 2

whether it moves it earlier or later depends on how correlated
the attributes are
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Intuition

suppose |Σ12| is small:

then greater initial uncertainty about θ1 increases the value to
learning about it

so increase in Σ11 results in more attention paid to attribute 1

but large |Σ12| can reverse this:

information about θ1 also reveals about θ2

increasing Σ11 (for fixed Σ12,Σ22) decreases correlation, less
externality

faster for uncertainty about θ1 to be reduced relatively

this effect dominates when prior correlation is significant
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Application 2:

Competing Information Providers



Competing Information Providers

new sources have expertise on a topic (e.g. Mueller report),
and provide information on this over time

want to maximize time spent on their site

choose the informativeness of news articles (i.e. reveal
everything you know all at once vs. trickle it out slowly)

in talk assume two sources, but see paper for extension to K
sources



The Game

(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
1 ρ
ρ 1

))
payoff-relevant state θ1 + θ2

each source i = 1, 2 freely chooses σi , providing

θi +N (0, σ2
i )

per unit of time

source i ’s payoff is the discounted average attention∫ ∞
0

e−rtβti dt

note: not necessary to impose a cost to providing more precise
information, equilibrium will have interior choices of σi
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Equilibrium

Proposition

The unique equilibrium is a pure strategy equilibrium (σ∗, σ∗) with

σ∗ =

√
1− ρ

2r

with ρ being DM’s prior correlation and r being the news sources’
discount rate.

signals are more precise in equilibrium (lower σ∗) when news
sources are less patient (larger r)



Role of Patience

σ∗ =

√
1− ρ

2r
.

increasing noise σi (i.e. provide lower-quality information) has two
opposing effects on attention:

1 DM more likely to attend to other source initially

2 but in the long run, source i receives more attention:
σi

σi + σj

=⇒ if news sources are patient (small r), they provide noisy info

=⇒ if news sources are impatient (large r), they compete to be
chosen in stage 1

role of correlation
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Conclusion

we study the problem of dynamic allocation of attention
across diverse information sources

under condition on prior, solution is simple/tractable/robust

useful towards various applications



Thank You!



Discrete-Time Analogue

Liang, Mu, and Syrgkanis (working paper):

unknown attribute values θ1, . . . , θK are jointly normal

payoff-relevant state ω = 〈α, θ〉 with a known and positive
weight vector α

at each discrete period t, agent chooses from among K
information sources

choice of source i produces observation of

Yi = θi + εi , εi ∼ N
(

0,
1

∆

)



Relationship Between Settings

suppose in continuous-time model, DM’s attention must be
constant and degenerate over each of [0,∆), [∆, 2∆), etc.

the difference X t+∆
i − X t

i is equivalent to the signal ∆ · Yi in
the discrete-time model

taking ∆→ 0 thus yields our main setting where attention
choices can be changed continuously

but in discrete-time, there is an “integer problem,” since
signals are non-divisible

continuous-time formulation allows for a sharper
characterization of the optimal info acquisition strategy, and
conditions needed for this characterization to hold

settings share an optimality of “myopic” acquisition



Counterexample

unknown attributes(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
10 −3
−3 1

))
,

want to learn θ1 + 4θ2

at al times t ≤ 1/4, t-optimal vector is (t, 0)

for t ∈ (1/4, 1], t-optimal vector is

(
−t + 1

3
,

4t − 1

3

)
thus as budget increases from 1/4 to 1, optimal amount of
attention devoted to θ1 is decreasing

so the t-optimal attention vectors are not monotone in t



Counterexample Intuition

initially, marginal value of learning about θ1 is strictly largest
⇒ learn about θ1

at t = 1/4, marginal values have equalized

turn from “first-order” comparison of marginal values to
“second-order” comparison of mixtures between signals

optimal mixture depends on whether the signals are
substitutes or complements

at t = 1/4, learning about θ1 and θ2 are substitutes

information about attribute 1 has a large negative impact on
the marginal value of information about attribute 2

agent would optimally like to take away some attention from
attribute 1 and re-distribute it to attribute 2

back



Transformation

Given σ1, σ2, we can normalize to unit signal precision:

Define θ̃i = θi/σi

Then signal θi +N (0, σ2
i ) is equivalent to θ̃i +N (0, 1),

returns our model

Payoff-relevant state rewritten as σ1θ̃1 + σ2θ̃2, so α̃i = σi

Transformed prior covariance matrix of θ̃ is

Σ̃ =


1

σ2
1

ρ

σ1σ2
ρ

σ1σ2

1

σ2
2


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Condition on Prior Belief is Satistifed

Assumption satisfied since

σ1

(
1

σ2
1

+
ρ

σ1σ2

)
+ σ2

(
ρ

σ1σ2
+

1

σ2
2

)
= (1 + ρ)

(
1

σ1
+

1

σ2

)
≥ 0.

Can thus use theorem to find attention levels given any σ1, σ2.



Role of Correlation

σ∗ =

√
1− ρ

2r
.

if prior is negatively correlated (smaller ρ), signals are
complements

=⇒ stage 1 is shorter

thus more competition for the long run, and sources choose to
provide noisier signals

back
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