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Introduction

how should an agent acquire information over time given

limited resources, and

access to multiple kinds of information?

examples:

mayor wants to learn the COVID incidence rate in city,
allocates limited number of tests across neighborhoods

news reader wants to learn the unknown cost of a proposed
policy, allocates time across different (biased) news sources
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This Talk

model of the dynamic information acquisition problem

main result: optimal information acquisition strategy can be
exactly characterized and has an easily describable structure

tractability of the model lends itself to application

characterization can be used to derive new results in three
settings motivated by particular economic questions



Model



Underlying Unknowns

unknown attributes (θ1, . . . , θK ) ∼ N (µ,Σ)

e.g. each “attribute” is the COVID incidence rate in a specific
neighborhood

attributes may be correlated

learn about θi by observing diffusion process X t
i (more soon)

payoff-relevant state: ω =
K∑

k=1

αkθk

e.g. aggregate COVID incidence rate in city

assume weights αk are known
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Attention Allocation

at each t ∈ R+, allocate budget of resources across attributes:

choose (βt
1, . . . , β

t
K ) subject to βt

1 + · · ·+ βt
K = 1

diffusion processes evolve as

dX t
i = βt

i · θi · dt +
√

βt
i · dBt

i

where Bi are independent standard Brownian motions.

more resources ⇒ more precise information
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1, . . . , β
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1 + · · ·+ βt
K = 1

diffusion processes evolve as

dX t
i = βt

i · θi · dt +
√

βt
i · dBt

i

where Bi are independent standard Brownian motions.

more resources ⇒ more precise information

discrete-time analogue: at each time t ∈ Z+, choose attention
vector (β1(t), . . . , βK (t)) summing to 1, and observe

θi +N
(
0,

1

βi (t)

)
for each i = 1, . . . ,K



Decision Problem

observe complete path of each process

at each time t the history is
{
X≤t
i

}K

i=1
information acquisition strategy S : map from histories into
an attention vector
stopping rule τ : map from history into decision of whether to
stop sampling

at endogenously chosen end time τ , take action a ∈ A and
receive u(a, ω, τ)



Related Literature

not a multi-armed bandit problem (Gittins, 1979)

recent work on dynamic learning from fixed set of signals:
Fudenberg, Strack, and Strzalecki (’18), Che and Mierendorff (’19);
Mayskaya (’19); Bardhi (’20); Gossner, Steiner, and Stewart (’20);
Azevedo et al (’20)

−→ we allow many signals with flexible correlation

rational inattention and flexible information acquisition:
Steiner, Stewart, and Matejka (’17); Hébert and Woodford (’19);
Morris and Strack (’19); Zhong (’19)

−→ our signals and information cost are prior-independent
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Main Results:

Characterization of the Optimal
Information Acquisition Strategy

Thm 1: result for K = 2

Thm 2: result for K > 2



Case of K = 2

two attributes(
θ1
θ2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

payoff-relevant state is ω = α1θ1 + α2θ2, where each αi > 0

define covi := Cov(ω, θi ) = αiΣii + αjΣji for each i = 1, 2

Assumption (“Attributes are Not Too Negatively Correlated”)

cov1 + cov2 = α1Σ11 + α2Σ12 + α1Σ21 + α2Σ22 ≥ 0

sufficient conditions:

α1 = α2 Σ12 = Σ21 ≥ 0 Σ11 = Σ22
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Optimal Attention Allocation Strategy

Theorem

Wlog let cov1 ≥ cov2. Define

t1 =
cov1 − cov2
α2 det(Σ)

.

The optimal attention strategy has two stages:

1 At times t ≤ t1, DM allocates all attention to attribute 1.

2 At times t > t1, DM allocates attention in the constant
fraction

(βt
1, β

t
2) =

(
α1

α1 + α2
,

α2

α1 + α2

)
.
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Example 1: Independent Attributes

(
θ1
θ2

)
∼ N

((
µ1

µ2

)
,

(
6 0
0 1

))

payoff-relevant state is θ1 + θ2

then optimally:

phase 1: put all attention on learning about θ1

at time t = 5/6, posterior covariance matrix is

(
1 0
0 1

)
after, split attention equally



Example 2: Correlated Attributes

(
θ1
θ2

)
∼ N

((
µ1

µ2

)
,

(
6 2
2 1

))

payoff-relevant state is θ1 + θ2

then optimally:

phase 1: put all attention on learning about θ1

at t = 5/2, posterior covariance is

(
3/8 1/8
1/8 3/8

)
after, split attention equally



K > 2 Attributes

Three different sufficient conditions (only need one):

Assumption 1: (Perpetual Substitutes.) Σ−1 has negative
off-diagonal entries.

the partial correlation between any pair of attributes (controlling for all

other attributes) is positive

Assumption 2: (Perpetual Complements.) Σ has negative
off-diagonal entries and Cov(θi , ω) ≥ 0 for each attribute i .

prior covariances are mildly negative

Assumption 3: (Diagonal Dominance.) Σ−1 is

diagonally-dominant: [Σ−1]ii ≥
∑
j ̸=i

|[Σ−1]ij | ∀ i .

covariance matrix is not too far from identity
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Optimal Information Acquisition Strategy

Theorem

Under any of the preceding assumptions, there exist times

0 = t0 < t1 < · · · < tm = +∞

and nested sets

∅ ⊊ B1 ⊊ · · · ⊊ Bm = {1, . . . ,K},

such that an optimal information acquisition strategy is described by a
deterministic path of attention allocations.

At each stage [tk−1, tk):

the optimal attention level is constant

and supported on the sources in Bk .

At the final stage, attention is proportional to the weight vector α.

full path can be computed from α and Σ (see paper)
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Properties of the Solution

The optimal attention allocation strategy is:

history-independent (can map out full path from t = 0)

independent of the stopping rule

don’t have to solve for stopping rule and information
acquisition strategy jointly

robust across decision problems



Explanation of Results



Static Problem

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

one-time budget of t total tests

posterior variance of ! can be written as a function V (q1, q2, q3)

static problem: choose q1, q2, q3 2 R+ to minimize V (q1, q2, q3)
subject to q1 + q2 + q3  t



Static Problem

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

one-time budget of t total tests

optimally allocate q⇤1(t) tests optimally allocate q⇤2(t) tests

optimally allocate q⇤3(t) tests

posterior variance of ! can be written as a function V (q1, q2, q3)

static problem: choose q1, q2, q3 2 R+ to minimize V (q1, q2, q3)
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Exogenous End Time T = 100

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

100 total tests

100 tests 0 tests

0 tests



Exogenous End Time T = 101

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

101 total tests

1 test 50 tests

50 tests



Exogenous End Time T = 101

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

101 total tests

1 test 50 tests

50 tests

DM faces intertemporal tradeo↵s: must choose between better information for
a decision at time t = 100 versus t = 101



Key Idea: Uniformly Optimal Strategies

Iff q∗(t) is increasing in in each of its coordinates, possible to
achieve q∗(t) at every t along a single sampling strategy

Call such a strategy uniformly optimal.
minimizes posterior variance at every moment
lemma: best for all decision problems

Our different sufficient conditions on the prior guarantee that
q∗(t) is increasing in t
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When Does a Uniformly Optimal Strategy Exist?

When is q∗(t) increasing in t?

Analogy with a classic consumer demand theory problem:

Utility function U(q1, . . . , qK ) over consumption of qk units of
each of K goods
Let D(p,w) denote consumer’s demand subject to budget
constraint p · q ≤ w .
Demand is normal if each coordinate of D(p,w) increases
with income w .

Let U = −V , p = (1, 1, . . . , 1)′, and w = t. Then normality
of demand is equivalent to monotonicity of q∗(t).

Our condition “Perpetual Complementarity” is directly related
to a sufficient condition for normality of demand.

We exploit properties of U = −V to derive the others.
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Structure of Uniformly Optimal Strategies

The attention allocations βt under the uniformly optimal
strategy are simply the time derivatives of q∗(t).

i.e. “greedy” optimization

At each stage, agent optimally divides attention among the set
of attributes with highest marginal value for learning about ω.

At each stage, the mixture maintains equivalence of marginal
values of those attributes, but reduces it.

Eventually, some other attribute has the same marginal value
and the agent expands his observation set to include it. Etc.
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Application of Characterization

Can apply characterizations to derive new results in settings
motivated by particular economic questions.

We illustrate this with three applications, where we use our
main results to:

tractably introduce correlation in settings that have been
previously studied under strong assumptions of independence.

derive results about other economic behaviors.



Summary of Applications

Application 1: Binary Choice
DM learns about unknown payoffs between two goods before
making a choice
use our characterization to generalize recent results from
Fudenberg et al (2018)

Application 2: Biased News Sources
game between biased sources providing information over time
use our characterization to solve for equilibrium

Application 3: Attention Manipulation
dynamic implications of a one-shot attention manipulation
use our characterization to derive complementary results to
Gossner et al (2020)



Application 1:

Binary Choice



Uncertain Drift Diffusion Model

Fudenberg, Strack, and Strzalecki (2018) recently proposed the
uncertain drift diffusion model:

Agent has choice between two goods with unknown payoffs

(v1, v2)
′ ∼ N

(
(µ1, µ2)

′,

(
σ2 0

0 σ2

))
Agent continuously divides a unit of attention across two
Brownian processes whose drifts are the unknown payoffs.

The agent chooses a stopping time τ to maximize

E[E[max{v1, v2} | Fτ ]− cτ ],

where cτ is a linear waiting cost.



Relationship to Our Framework

The payoff difference v1 − v2 is a sufficient statistic for the
agent’s decision.

Define θ1 = v1 and θ2 = −v2. Then the FSS model is nested
in our framework with ω = θ1 + θ2.

Different from FSS, suppose

(v1, v2)
′ ∼ N

(
(µ1, µ2)

′,
)

Correlation and asymmetry both typical properties of choice
environments:

Value of two stocks correlated by global economic shocks
Uncertainty about value of PC vs Mac depends on prior
experience with either computer
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environments:

Value of two stocks correlated by global economic shocks
Uncertainty about value of PC vs Mac depends on prior
experience with either computer



Endogenous Allocation of Attention

Theorem 5, FSS (Optimal Endogenous Allocation of Attention)

Suppose Σ =

(
σ2 0
0 σ2

)
. The agent optimally divides attention

equally at every moment of time.

Our Generalization

Suppose Σ =

(
Σ11 Σ12

Σ21 Σ22

)
with Σ11 ≥ Σ22.

Stage 1: Prior to time t∗1 =
Σ11 − Σ22

det(Σ)
, the agent optimally

allocates all attention to θ1.

Stage 2: After t∗1 , the agent optimally allocates attention equally.

Length of Stage 1, t∗1 , is increasing in asymmetry between initial
uncertainty and correlation between the payoffs.
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Earlier Decisions are More Accurate

Let p(t) be the probability of choosing the higher-value good conditional
on stopping at time t.

Two opposing forces:

More information at later times.

More likely to stop earlier when the decision is easy.

Proposition 3, FSS (Speed and Accuracy)

Suppose Σ =

(
σ2 0
0 σ2

)
. p(t) is (weakly) decreasing over time.

Our Generalization

For any Σ, p(t) is (weakly) decreasing over time.
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Applying our Characterization

How we use the characterization of attention allocation in generalizing
the result that earlier decisions are more accurate:

Recall that the characterization is:

Stage 1: Prior to time t∗1 =
Σ11 − Σ22

det(Σ)
, the agent optimally

allocates all attention to θ1.

Stage 2: After t∗1 , the agent optimally allocates attention equally.

−→ optimal attention strategy doesn’t depend on the stopping time

can take information as given exogenously

−→ result pins down the evolution of Σt

shows in particular that asymmetry in uncertainty is decreasing in
time along the optimal path, which turns out to be key
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Application 2:

Biased News Sources



The Setting

Two sources i = 1, 2 (e.g. liberal and conservative) report on

ω ∼ N (µω, σ
2
ω)

e.g., the cost of a proposed policy

Partisan implications are not precisely known by the general
public (although they are understood by the sources)

e.g. new limits on short selling in financial markets or trade
deals with countries in Southeast Asia

Define b to be the benefit to source 1’s party when the reader
believes that ω is large.

From the perspective of the reader, b is a random variable
with distribution b ∼ N (µb, σ

2
b)



The Game

Sources bias their reporting in opposite directions:

Unit of time on source 1

↪−→ X1 ∼ N (ω + ϕ1b, ζ
2
1 )

Unit of time on source 2

↪−→ X2 ∼ N (ω − ϕ2b, ζ
2
2 )

where both the intensity of bias (ϕi > 0) and noisiness of reporting
(ζi > 0) are choice variables.



Source Payoffs

A representative news reader faces a decision that depends on ω,
and optimally allocates attention over time −→ (βt

1, β
t
2).

Each source i ’s payoff is the sum of discounted attention and a
reward for bias:

Ui =

∫ ∞

0
re−rtβt

i dt︸ ︷︷ ︸−λ(ϕi − κ)2.

discounted average attention

r is the discount rate
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Source Payoffs

A representative news reader faces a decision that depends on ω,
and optimally allocates attention over time −→ (βt

1, β
t
2).

Each source i ’s payoff is the sum of discounted attention and a
reward for bias:

Ui =

∫ ∞

0
re−rtβt

i dt − λ(ϕi − κ)2︸ ︷︷ ︸ .
reward for bias

λ moderates strength of incentive
κ is the bliss point for the bias intensity



Applying our Characterization

Fixing choices ϕ1, ϕ2, ζ1, ζ2 by the two sources, our
characterization allows us to

−→ pin down attention path (β1(t), β2(t))

−→ derive payoffs Ui (ϕ1, ϕ2; ζ1, ζ2)

−→ solve for equilibrium
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Equilibrium

Proposition

Suppose λκ2 ≥ 1.6. The unique pure strategy equilibrium is
(ϕ∗

1, ζ
∗
1 ;ϕ

∗
2, ζ

∗
2 ) where

ϕ∗
1 = ϕ∗

2 =
1

2

(
κ+

√
κ2 − 1

2λ

)
and

ζ∗1 = ζ∗2 =
σb
2
√
r
·
(
κ+

√
κ2 − 1

2λ

)
.

Given these equilibrium choices, the reader optimally devotes equal
attention to the two sources at every moment.



Equilibrium News Informativeness

X1 ∼ N (ω + ϕ∗
1b, ζ

∗
1
2) X2 ∼ N (ω + ϕ∗

2b, ζ
∗
2
2)

Corollary (Informativeness of News)

The equilibrium noise level ζ∗ is

(a) increasing in the incentive for bias λ and the bliss point κ for
the bias intensity;

−→ incentives for bias not only increase polarization in
equilibrium, but also decrease quality of reporting

(b) decreasing in the discount rate r .

−→ patient news sources provide lower quality news
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Intuition

Suppose ϕ1 = ϕ2. There are (up to) two stages of info acquisition:

Stage 1: source i with smaller noise ζi receives all attention

Stage 2: each source i receives fraction
ζi

ζ1 + ζ2

Firms face a tradeoff between optimizing for long-run viewership
and competing to be chosen in the short run

Parameters that emphasize the long-run lead to higher eq ζi :

More patience (lower discount rate r)

Higher incentives for bias (larger λ and κ):

Polarized news sources live in symbiosis: provide
complementary information, Stage 2 starts earlier.
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Application 3:

Attention Manipulation



Attention Grabbing

Suppose a third party temporarily diverts the agent’s attention
towards source i .

1 Does this lead to a persistently higher amount of attention
devoted to source i?

2 What are the attention externalities on other sources?



Gossner, Steiner, and Stewart (2020)

Gossner et al (2020) recently studied these questions in a
model in which an agent sequentially learns about the quality
of a number of goods.

One of their main results resolves the two questions in the
following way.

1 Does manipulation of attention towards i lead to a persistently
higher amount of attention devoted to that source?

−→ Yes, cumulated attention to that source is higher at every
subsequent moment.

2 What are the attention externalities on other sources?

−→ Cumulative attention paid to any other source is lower at
every subsequent moment.
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Our Frameworks are Non-Nested

Key assumption in GSS: attention strategy used by the agent
satisfies a version of Independence of Irrelevant Alternatives (IIA):

Conditional on not focusing on the good to which atten-
tion is diverted, the agent’s belief about that good does
not affect the relative probabilities of focusing on the re-
maining goods.

Our framework differs in a few key ways:

agent learns about multiple attributes of an unknown
(uni-dimensional) payoff-relevant state

attribute values may be correlated

Outside of the special case of independence, the optimal attention
allocation strategy generally fails IIA.
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Applying our Characterization

Our characterization applies for any Σ satisfying one of the given
conditions.

Thus can apply the characterization also off path given the
posterior covariance matrix following manipulation.



Revisiting GSS’s Findings

1 Does manipulation of attention towards i lead to a persistently
higher amount of attention devoted to that source?

−→ Yes, cumulated attention to that source is higher at every
subsequent moment.

HOLDS FOR ARBITRARY CORRELATION

2 What are the attention externalities on other sources?

−→ Cumulative attention paid to any other source is lower at
every subsequent moment.

IN GENERAL CAN BREAK, BUT HOLDS UNDER AN
ADDITIONAL CONDITION
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Our Findings

Perpetual Substitutes: Σ−1 has negative off-diagonal entries, i.e.
every pair of attributes has positive partial correlation.

Proposition

1 For any Σ satisfying sufficient conditions, manipulation of
attention towards source i leads to weakly higher cumulative
attention at every subsequent time.

2 Suppose Perpetual Substitutes is satisfied.

Then manipulation of attention towards source i leads to
weakly lower cumulative attention towards every other source
at every moment of time.
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Conclusion

We characterize optimal dynamic allocation of attention
across multiple correlated information sources.

Under weak conditions on the prior belief, the solution has a
simple structure, is history-independent, and is robust across
decision problems.

Useful for applications!



Possible Extensions

Results hold also for:

discrete model where agents allocate a fixed budget of
precisions each period

discrete model where agents choose a budget size of
precisions each period (at some cost) and allocate it

intertemporal decision problems (choose actions over time as
well, receive payoff that depends on the sequence of actions)



Thank You!
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