Optimal and Myopic Information Acquisition

Annie Liang®  Xiaosheng Mu?  Vasilis Syrgkanis®

1UPenn

°Harvard  3MSR



Introduction

@ Classic problem:
e DM repeatedly acquires information and takes actions.
e Payoff depends on the actions taken, as well as on an unknown
payoff-relevant state.
@ We consider additional features:
e acquisition of information from flexibly correlated sources
e limited attention: fixed number of observations each period.
@ Simple strategy for information acquisition: act as if each
period were the last. (myopic)

@ Main result: in a canonical setting—jointly normal
signals—this is sometimes the best you can do.



Preview of Results

We show that the myopic rule is optimal:
@ if signal observations are acquired in sufficiently large blocks
each period.
@ and for all block sizes:

e in “separable” environments.
e eventually in generic environments.

These results hold across all payoff functions (and in particular,
independently of discounting).



Preview of Results

We show that the myopic rule is optimal:

@ if signal observations are acquired in sufficiently large blocks
each period.
@ and for all block sizes:

e in “separable” environments.
e eventually in generic environments.

These results hold across all payoff functions (and in particular,
independently of discounting).

Implications:
@ Exactly characterization of dynamically optimal solution.

@ Robustness of myopic rule to uncertainty about payoff
function and timing of decision.



Model

K States: (61,...,0k) ~ N(0, V).
—_——
fixed over time

e t=12....

K
N Signals: X! = Zcikek +ef, e~ ,/\/'(0,0,-2).
—

k=1 .. .
i.i.d. over time

cik and o2 are known

Each period t, the DM

e samples B signals

e chooses an action a; € A;

Payoff is arbitrary function U(ay, a, . ..; 61).



Special Cases

Exogenous Final Date:
U(al, an,..., 91) = u-,-(a-r, 91)

where T is random exogenously determined final time period.

Endogenous Stopping with Per-Period Costs.

@ Each a; specifies both the decision of whether to stop, and
also the action to be taken if stopped.

@ Payoff as above, but T is endogenously chosen.



Restrictions on Environment

Note assumptions in model:

@ One-dimensional payoff-relevant state (some linear
combination of 61,...,0k)

@ No feedback from actions

Additionally impose:

Assumption (Non-Redundant Signals)

Infinite observations of each signal are necessary and sufficient to
fully learn the payoff-relevant unknown state.



Strategy

A strategy consists of:

e information acquisition strategy strategy: signal choices in
each period given history of signal choices and realizations,

@ decision strategy: action choice after each history

(Without loss, consider only pure strategies.)

Hence focus on information acquisition strategy.



Myopic Information Acquisition

Definition

An information acquisition strategy is myopic, if at every next
period, it prescribes choosing the B signals that (combined with
the history of observations) lead to the lowest posterior variance
about the payoff-relevant state.

e Blackwell dominates any other multi-set of B signals (Hansen
and Torgersen, 1974)— best for all payoff criteria.

@ Optimal if the current period is the last chance for
information acquisition.



Myopic Rule is Optimal Given Large Batch Sizes

Theorem (Immediate Optimality under Many Observations)

Fix any prior and signal structure, and suppose B is sufficiently
large. Then the DM has an optimal strategy that acquires
information myopically.



Myopic Rule is Optimal in Separable Environments

Definition

The informational environment is separable if there exist convex
functions g1, ..., gk and a strictly increasing function F such that

Var(qi,...,qx) = F(gi(q1) + - - + gk (gk))

where g; = # of times signal i/ observed.

Theorem

Suppose the informational environment is separable. Then for
every B € NT, the DM has an optimal strategy that acquires
information myopically.



Examples of Separable Environments

@ multiple biases — you care about x. first signal tells you x + by + bo,
three other signals inform about each individual b;.
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Examples of Separable Environments

@ multiple biases — you care about x. first signal tells you x + by + bo,
three other signals inform about each individual b;.

@ hierarchy of biases — you care about x. signals are

X+ by + €1
b1 + by + €
by + €3

© symmetric signals — you care about 61 + 6, + 3. signals are about
01 + 05, 01 + 03, 0> + 03 respectively.



Eventual Optimality

Theorem (Eventual Optimality)

For generic coefficient matrices C, there exists a time T* € N s.t. for
every batch size B, the DM has an optimal strategy that acquires
information myopically after T periods.

@ At all late periods, optimal rule proceeds myopically.

@ In paper, complementary result: myopic acquisition eventually leads
to optimal signal path.



Summary of Results

Three results regarding optimality of the myopic information
acquisition rule:

e Thm 1: Myopic information acquisition is optimal from period
1 if B is sufficiently large.

@ Thm 2: For class of separable environments, myopic
information acquisition is optimal from period 1 given any B.

@ Thm 3: For every B, generically the optimal rule is eventually
myopic.



Intuition for Results

One-shot version of problem: optimally allocate t observations
across signals.

t-optimal “division vector”:

n(t) = (m(t),...,nk(t)) €  argmin  Var(qi,...,qk)
GELL, K qi=t



n(t) Does Not Always Evolve Sequentially

Example 1

61,602,053 ~ N(0,1)

payoff-relevant state: 6;

X1 =01 —th+e
Xo =t —03+e
X3 =03+¢3

complementarities across signals



n(t) Does Not Always Evolve Sequentially

Example 1

61,602,053 ~ N(0,1)

payoff-relevant state: 6;

n(4)
3 Xy, =601 —0+¢
1 Xo =0—03+e
0 X3 =03+¢3

complementarities across signals



n(t) Does Not Always Evolve Sequentially

Example 1

61,602,053 ~ N(0,1)

payoff-relevant state: 6;

n(4) n(5)
3 4 Xy, =601 —0+¢
1 1 Xo =6—03+ ¢
0 0 X3 =03+e3

complementarities across signals



n(t) Does Not Always Evolve Sequentially

Example 1

61,602,053 ~ N(0,1)

payoff-relevant state: 6;

X1 =01 —th+e
Xo =0r—0z3+e
X3 =03+¢3

complementarities across signals



Sequentiality of n(t) Produces Desired Result

But suppose (n(t))¢>1 could be achieved by sequential sampling.

Then,

@ myopic information acquisition will produce this sampling rule.

@ Lemma: the sampling rule is best for all payoff criteria
(intuitively: no conflict across periods)

= myopic rule is optimal



Example in Which n(t) is Sequential

Example 2

61,6,,03 ~ N(0,1)
payoff-relevant state: 07 + 6, + 63

X1 =0 +e
Xo =b+e
X3 =03+ €3

“independent signal structure”
independent prior



Example in Which n(t) is Sequential

Example 2

61,6,,03 ~ N(0,1)
payoff-relevant state: 07 + 6, + 63

n(1) n(2) n(3)
1 1 1 X1 =01+¢
0 1 1 Xo =0+ e
0 0 1 X3 =603+e€3

“independent signal structure”
independent prior



Relationship Between Two Examples
Let's rewrite Example 1 to look more like Example 2.

Example 1 Example 1, Rewritten
917 92a 03 ~ N(07 1)

payoff-relevant: 6y

Xi=01—0+¢€
X22(92—03+62
X3 =03+¢€3
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Relationship Between Two Examples
Let's rewrite Example 1 to look more like Example 2.

Example 1 Example 1, Rewritten
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Relationship Between Two Examples

Let's rewrite Example 1 to look more like Example 2.

Example 1

01,02,03 ~ N(0,1)

payoff-relevant: 61

Xi=01—0>+¢€
Xo =0 — 03+ e
Xz3=03+¢€3

Example 1, Rewritten

01,02,05 ~ N(u, V)

01 + 62 + 03
X1=01+ ¢
Xo =0+ €
X3 =03 + €3



Signals “De-Correlate”

Example 1, Rewritten Example 2
01,02,05 ~ N(p, V) 01,02,03 ~ N(0,1)
9~1+9~2—|—§3 01+ 6> + 03
X1:§1+61 Xi=01+¢&
X2:§2+62 Xo =6+ €
X3 =03+ €3 X3 =103 +¢€3

correlated prior independent prior



Signals “De-Correlate”

Example 1, Rewritten Example 2
é’1752750“3’\"/\/(/% V) 01792793NN(071)
9~1+9~2—|—§3 01+ 6> + 03
X1:§1+61 Xi=01+¢&
X2:§2+62 Xo =02+ e
correlated prior independent prior

As observations of signals accumulate, beliefs over 51, 52,53 tend
to independence, returning Example 2.



Intuition for Results

@ De-correlation of signals follows from a Bayesian version of
the Central Limit Theorem.

e not special to normality!

@ At late periods we have a setting much like Example 2, and
n(t) evolves approximately sequentially.

@ Two different conditions allow us to strengthen this to
(eventual) exact optimality of myopic information acquisition.

e Larger batch sizes: Demonstrate that for sufficiently large B,
division vectors n(Bt) are attainable using a sequential rule.

e Quantify “typicality” of failures of sequentiality. Show that at
late periods t, n(t) generically evolves sequentially.



Accuracy vs. Correlation

Plausible intuition: since agents learn all states,
myopic strategy will be optimal.



Accuracy vs. Correlation

Plausible intuition: since agents learn all states,
myopic strategy will be optimal.

— confused, depends on what we mean by “learn”.

@ As DM learns, beliefs simultaneously become more precise and less
correlated, and these two effects are confounded in our main results.

@ We show that the block size B needed in Theorem 1 depends on
how many observations are required for 61, ...,0x to “de-correlate”.

@ De-correlation is quicker when prior is:

e less accurate
o less correlated

@ These also lead to the myopic rule becoming optimal sooner.



Summary

@ We consider optimal dynamic information acquisition with normal
signals that are flexibly correlated.

@ Complementarity/substitution could generate intertemporal tradeoff.

@ But we provide conditions under which these complementarities
eventually vanish = myopic strategy becomes optimal.

@ When signals acquired in large batches, optimality holds
immediately.

@ Optimality extends to endogenous sampling intensity and to a class
of multi-agent games (see paper).
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