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background

algorithms are used to guide many high-stakes decisions

which patients should be treated? which borrowers should receive a
loan? which defendants should receive bail?

these algorithms often have errors that vary systematically across
subgroups of the population

false positive rate of algorithm used to predict criminal reoffense
twice as high for Black defendants (Angwin and Larson, 2016)

patients assigned to same risk score have substantially different
actual health risks depending on race (Obermeyer et al., 2019)

accuracy of facial-recognition technologies varies substantially
across racial and gender groups (Klare et al., 2012)

algorithm designers increasingly optimize not only for accuracy but also
“fairness” (maintain comparable error rates across groups)
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fairness vs. accuracy

what is the tradeoff between fairness and accuracy, and how does
it depend on the information available for prediction?

1 the designer chooses the algorithm

define a fairness-accuracy frontier that ranges across a broad
class of preferences/optimization criteria
identify simple properties of the inputs that govern the shape
of this frontier

2 the designer flexibly regulates the inputs to the algorithm
(info design), another agent chooses the algorithm

characterize what part of this frontier can be achieved through
appropriate garbling of inputs
ask whether the optimal garbling might involve excluding a
covariate (group identity, test scores) entirely



fairness vs. accuracy

what is the tradeoff between fairness and accuracy, and how does
it depend on the information available for prediction?

1 the designer chooses the algorithm

define a fairness-accuracy frontier that ranges across a broad
class of preferences/optimization criteria
identify simple properties of the inputs that govern the shape
of this frontier

2 the designer flexibly regulates the inputs to the algorithm
(info design), another agent chooses the algorithm

characterize what part of this frontier can be achieved through
appropriate garbling of inputs
ask whether the optimal garbling might involve excluding a
covariate (group identity, test scores) entirely



fairness vs. accuracy

what is the tradeoff between fairness and accuracy, and how does
it depend on the information available for prediction?

1 the designer chooses the algorithm

define a fairness-accuracy frontier that ranges across a broad
class of preferences/optimization criteria
identify simple properties of the inputs that govern the shape
of this frontier

2 the designer flexibly regulates the inputs to the algorithm
(info design), another agent chooses the algorithm

characterize what part of this frontier can be achieved through
appropriate garbling of inputs
ask whether the optimal garbling might involve excluding a
covariate (group identity, test scores) entirely



fairness vs. accuracy

what is the tradeoff between fairness and accuracy, and how does
it depend on the information available for prediction?

1 the designer chooses the algorithm

define a fairness-accuracy frontier that ranges across a broad
class of preferences/optimization criteria
identify simple properties of the inputs that govern the shape
of this frontier

2 the designer flexibly regulates the inputs to the algorithm
(info design), another agent chooses the algorithm

characterize what part of this frontier can be achieved through
appropriate garbling of inputs

ask whether the optimal garbling might involve excluding a
covariate (group identity, test scores) entirely



fairness vs. accuracy

what is the tradeoff between fairness and accuracy, and how does
it depend on the information available for prediction?

1 the designer chooses the algorithm

define a fairness-accuracy frontier that ranges across a broad
class of preferences/optimization criteria
identify simple properties of the inputs that govern the shape
of this frontier

2 the designer flexibly regulates the inputs to the algorithm
(info design), another agent chooses the algorithm

characterize what part of this frontier can be achieved through
appropriate garbling of inputs
ask whether the optimal garbling might involve excluding a
covariate (group identity, test scores) entirely



part i:

designer chooses algorithm



setup

single designer and population of (non-strategic) subjects

each subject is described by three variables:

- type Y taking values in Y
(e.g. need for medical procedure)

- group G ∈ G = {r , b}
(e.g. race)

- covariate vector X taking values in X
(e.g. image scans, # past hospital visits, blood tests)

X is observed by the designer, Y and G are not directly
observed (but may be revealed by X )
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how covariates, group identity, and type are related

in the population, (Y ,G ,X ) ∼ P

don’t impose any assumptions on P, could be that:

X reveals or closely proxies for G

e.g., consumption patterns predict gender and correlate highly
with other group identities (Bertrand and Kamenica, 2020)

X is systematically biased up or down for one group

e.g., test scores may be shifted up for a high-income group

X is more informative about Y for one group than the other

e.g., the covariate is selectively reported or more accurately
measured for one group
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algorithm

each subject receives a decision d ∈ D = {0, 1}
(e.g. whether the procedure is recommended)

the designer chooses an algorithm

a : X → ∆(D)

for determining (distributions over) decisions based on the
observed covariate vector
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group errors

fix a loss function ` : D × Y → R
measures inaccuracy or harm for a given subject

e.g., a convex combination of Type I and Type II errors

Definition

the error for group g ∈ G given algorithm a is

eg (a) := ED∼a(X ) [` (D,Y ) | G = g ]

i.e., the average/expected loss for subjects in group g

improving accuracy: lowering er and eb

improving fairness: lowering |er − eb|
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how to trade off fairness and accuracy?

there is a large literature on social preferences

this literature documents substantial heterogeneity in how
individuals trade off equity and efficiency

Fehr and Schmidt (1999), Andreoni and Miller (2002),
Charness and Rabin (2002), Sullivan (2022)

moreover, no evidence of consensus on how to make this
tradeoff for real applications of algorithmic prediction rules



preferences

we consider a broad class of designer preferences:

Definition (fairness-accuracy (FA) dominance)

let >FA be the partial order on R2 satisfying (er , eb) >FA (e ′r , e
′
b) if

er ≤ e ′r , eb ≤ e ′b,︸ ︷︷ ︸
higher accuracy

and |er − eb| ≤ |e ′r − e ′b|︸ ︷︷ ︸
higher fairness

with at least one of these inequalities strict

Definition

a fairness-accuracy preference � is any total order on R2 such
that e � e ′ whenever e >FA e ′
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set of error pairs that all designers agree improve upon e ′
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example FA preferences

1 utilitarian: wu(er , eb) = −prer − pbeb where pr and pb are
the proportions of either group

generalizations of this rule put other weights on the two
groups (Charness and Rabin, 2002; Dworczak et al., 2021)

2 egalitarian: order errors by − |er − eb|, break ties using wu

related formulation used in “difference aversion” models (Fehr
and Schmidt, 1999; Bolton and Ockenfels, 2000)

3 rawlsian: order errors by −max {er , eb}, break ties using wu

4 constrained optimization (e.g., Hardt et al., 2016):

min
a:X→∆(D)

prer (a) + pbeb(a) s.t. |er (a)− eb(a)| ≤ ε
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fairness-accuracy frontier

Definition

the feasible set given X is

E (X ) := {(er (a) , eb(a)) : a ∈ AX}

where AX is the set of all algorithms a : X → ∆(D)

Definition

the fairness-accuracy frontier given X is

F (X ) :=
{
e ∈ E (X ) : @ e ′ ∈ E (X ) s.t. e ′ �FA e

}
describes optimal points across the broad range of preferences
consistent with FA-dominance
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feasible set of group error pairs

lemma: for any X , the feasible set E(X ) is compact and convex

(if X is finite, it is a convex polygon)

er

eb



important points

group-optimal points:

RX := arg min
e∈E(X )

er BX := arg min
e∈E(X )

eb

fairness-maximizing point:

FX := arg min
e∈E(X )

|er − eb|

(break all ties in favor of aggregate accuracy)
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easy to locate geometrically:

er

eb



important points

easy to locate geometrically:

er

eb

RX



important points

easy to locate geometrically:

er

eb

RX

BX



important points

easy to locate geometrically:

er

eb

RX

BX

F X



important points

easy to locate geometrically:

er

eb

RX

BX



group-skewed vs group-balanced

Definition

covariate vector X is

r-skewed if er < eb at RX and er ≤ eb at BX

“group r ’s error is lower both at group r ’s favorite point and
also at group b’s favorite point”

b-skewed if eb < er at BX and eb ≤ er at RX

group-balanced otherwise



characterization of fairness-accuracy frontier

Theorem

F (X ) is lower boundary of E (X ) between

RX and BX if X is group-balanced

(= usual Pareto frontier!)
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strong fairness-accuracy conflict

compare the error pairs e = (1/2, 1/2) and e ′ = (1/3, 1/4)

e is Pareto-dominated but more equal

when given choices between allocations like e and e ′, some
experimental subjects choose e

31% of subjects in an experiment in Fisman et al. (2007)

can points like e and e ′ both be on the FA frontier?

Definition

e, e ′ are a strong accuracy-fairness conflict if

er ≤ e ′r and eb ≤ e ′b (with at least one inequality strict)

|er − eb| > |e ′r − e ′b|
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corollary: suppose FX /∈ {RX ,BX}; then X is group-skewed ⇐⇒
some e, e ′ ∈ F(X ) represent a strong accuracy-fairness conflict
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in practice, moving up that red line could correspond to choosing
not to condition on certain available information
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“I have a policy proposal, which would decrease accuracy for 
both groups, but increase fairness.”

“Are the inputs to your algorithm group-balanced?”

POLICYMAKER

ACADEMIC
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“I have a policy proposal, which would decrease accuracy for 
both groups, but increase fairness.”

“Are the inputs to your algorithm group-balanced?”

POLICYMAKER

ACADEMIC

“No, they are group-skewed.”

POLICYMAKER

“If you care sufficiently about fairness relative to accuracy, 
then your proposal may be optimal for your goals.”
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which of group balance and group skew is more common?

difficult to anticipate without an empirical analysis

why might X be group-balanced?

X has a group-dependent meanings

high X implies high Y for group r , but low Y for group b

different inputs in X are informative for either group

X = (X1,X2) where X1 is uninformative about Y for group r
and X2 is uninformative about Y for group b

why might X be group-skewed?

X is asymmetrically informative

Y | X ,G = r more dispersed than Y | X ,G = b

e.g., medical data is recorded more accurately for high-income
patients than low-income patients
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generalizations

beyond absolute difference

results extend when unfairness is measured as |φ(er )− φ(eb)|
where φ is some continuous strictly increasing function

if φ is log, then this corresponds to evaluating fairness using
the ratio of errors rather than their difference

different loss functions for evaluating fairness and accuracy

qualitative result extends whenever the two loss functions
aren’t “directly opposed”

group-balance generalizes to whether FX belongs to usual
Pareto frontier

X is group-balanced =⇒ FA frontier is usual Pareto frontier
X fails group-balance =⇒ FA frontier is union of the Pareto
frontier and a positively-sloped sequence of lines
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special case: X reveals G

in special cases, the frontier simplifies further.

Proposition

suppose G | X is degenerate; then, E(X ) is a rectangle with sides
parallel to axes and F(X ) is the line segment from RX = BX to FX
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45�

E(X)

RX = BX FX

frontier is rawlsian: worse-off group gets best feasible error
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special case: conditional independence

Proposition

Suppose G ⊥⊥ Y | X; then, F (X ) is that part of the lower
boundary of the feasible set from the point BX = RX to the point
FX .

er
45�

E(X)

RX = BX

eb

FX

the only difference across designers that matters is how they
choose to resolve strong fairness-accuracy conflicts
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part ii:

designer regulates inputs



regulating algorithmic inputs

so far we’ve given the designer control of the algorithm

in practice sometimes

the algorithm is set by an agent who does not care about
fairness across groups
the inputs used by the algorithm are constrained by a designer
who does

e.g., in 1997, Berkeley law school administrators reported to
their admissions committee only a coarsened LSAT score

(Chan and Eyster, 2003)

we’ll model this as an information design problem
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input design model

there is a primitive covariate vector X

t = 1 : the designer chooses a garbling of X , i.e., a stochastic
map T : X → ∆(T )

t = 2 : the agent chooses the algorithm a : T → ∆(D) that
maximizes the utilitarian criterion

Definition

the input design feasible set given X is

E∗ (X ) := {e (aT ) : T is a garbling of X}

where aT denotes the utilitarian-optimal algorithm given T

Definition

the input design fairness-accuracy frontier given X , denoted
F∗ (X ), is the set of all FA-undominated points in E∗(X )
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example garblings

real examples of such garblings are abundant

drop an input:
“Ban the Box” campaign prohibited employers from asking
about criminal history (Agan and Starr, 2018)
some researchers advocate for race-blind algorithms in the
context of health predictions (Manski, 2022)

coarsen an input:
essentially any test score

add noise:
differential privacy initiatives adopted by the US Census
Bureau, Apple, and Google



input design versus control of the algorithm

we’ll ask two questions:

how powerful is input design relative to control of the
algorithm?

could it be optimal for the designer to exclude an input
altogether?
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let e0 be the minimal achievable aggregate error given no
information
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define H = {(er , eb) : prer + pbeb ≤ e0}



how powerful is input design?
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lemma: E∗(X ) = E(X ) ∩ H
(see also Alonso and Camâra, 2016)



how powerful are informational constraints?

Proposition

(a) If X is group-balanced, then F (X ) = F∗ (X ) iff RX ,BX ∈ H

(b) If X is r -skewed, then F (X ) = F∗ (X ) iff RX ,FX ∈ H
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takeaway: under weak conditions, designer can implement favorite
(unconstrained) outcome by designing the algorithmic inputs



add/ban covariates?

constraints on algorithmic inputs sometimes take the form of
a ban on use of a specific covariate

e.g., banning use of race in medical predictions, or banning
test scores in college admissions

because of misaligned preferences between the designer and
agent, banning a covariate can be optimal



simple example where banning an input is optimal

Y ∈ {0, 1} with P(Y = 1 | G = g) = 1/2 for both groups g

X ∈ {0, 1} is a binary signal

X = Y with probability 1 if G = r
X = Y with probability 0.6 if G = b

the designer is Egalitarian (payoff is −|er − eb|)
sending no information leads to a payoff of |0.5− 0.5| = 0.

sending any information about X leads to a negative payoff
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er

(0.5, 0.5)

(0, 0.4)



uniform worsening of the frontier

at the other extreme:

Definition

excluding X ′ given X uniformly worsens the frontier if every
point in F∗(X ) is FA-dominated by a point in F∗(X ,X ′)

any point that belongs to F∗(X ,X ′) but not to F∗(X ) can
only be implemented by sending information about X ′

condition guarantees that no designer’s optimal garbling
excludes X ′

remark: this is different from comparing the information policies
of completely revealing X versus completely revealing (X ,X ′)
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two comparisons

excluding group identity:

garblings of X vs. garblings of (X ,G )

excluding an arbitrary covariate when G is present:

garblings of (X ,G ) vs. garblings of (X ,G ,X ′)



compare X to (X ,G )

Proposition

suppose RX ,BX ∈ H. excluding G uniformly worsens the frontier if
and only if X is group-balanced
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compare X to (X ,G )

Proposition

suppose RX ,BX ∈ H. excluding G uniformly worsens the frontier if
and only if X is group-balanced
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Figure: X is group-skewed



takeaways

so long as X is group-balanced, then every designer can find a
way of combining the information in G and X that is superior
to sending information about X alone

echoes previous findings that disparate treatment may be
necessary to preclude disparate impact

Lundberg (1991), Chan and Eyster (2003), Ellison and Pathak
(2022)

here disparate treatment is via an asymmetric information
policy rather than through the algorithm itself



compare (X ,G ) to (X ,G ,X ′)

definition: say that X ′ is decision-relevant over X for group g
if there are realizations (x , x ′) and (x , x̃ ′) of (X ,X ′) such that

{1} = argmin
d∈D

E[`(d ,Y ) | X = x ,X ′ = x ′,G = g ]

while

{0} = argmin
d∈D

E[`(d ,Y ) | X = x ,X ′ = x̃ ′,G = g ]

i.e., the additional information in X ′ changes the optimal
assignment for some individual in group g relative to X alone



compare (X ,G ) to (X ,G ,X ′)

Proposition

(a) suppose (X ,G ) is g-skewed. then:

excluding X ′ given (X ,G ) uniformly worsens the frontier ⇐⇒
X ′ is decision-relevant over X for group g ′ 6= g.

(b) suppose (X ,G ) is group-balanced. then:

excluding X ′ given (X ,G ) uniformly worsens the frontier ⇐⇒
X ′ is decision-relevant over X for both groups.



takeaways

consider the question of whether to ban test scores in admissions
decisions

test scores are likely to be decision-relevant for both groups, so our
result suggests that:

if G is available, then excluding test scores is welfare-reducing
for all designers with the ability to garble available covariates

if G is not available, then it may be better for a sufficiently
fairness-minded designer to completely exclude test scores

if affirmative action is banned nationwide, then universities with
certain preferences may have reason to ban use of test scores
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takeaways

our framework abstracts away from many important features
of the college admissions process

but the link between the availability of G and the value of
additional information holds more generally

access to group identity has a positive spillover effect for the
value of other covariates

there is always some group-dependent garbling of the other
information that aligns the agent and designer’s incentives.
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conclusion

framework for evaluating the accuracy/fairness tradeoffs of
algorithms

characterized the fairness-accuracy frontier over different
designer preferences for how to trade off these criteria

explained how certain statistical properties of the algorithm’s
inputs impact the shape of this frontier

in some cases (e.g., when the inputs are group-balanced),
there are conclusions/policy recommmendations that hold for
all designer preferences in a broad class



thank you



simple example where banning an input is optimal

Y ∈ {0, 1} with P(Y = 1 | G = g) = 1/2 for both groups g

X ∈ {0, 1} is a binary signal

X = Y with probability 1 if G = r
X = Y with probability 0.6 if G = b

the designer is Egalitarian (payoff is −|er − eb|)

sending no information leads to a payoff of |0.5− 0.5| = 0.
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