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background

algorithms are used to guide many high-stakes decisions

who should receive a medical treatment?

who should receive a loan?

who should receive bail?

who should receive employment?

recent empirical evidence that these algorithms often have errors that
vary systematically across subgroups of the population

patients assigned to same risk score have substantially different
actual health risks depending on race (Obermeyer et al., 2019)

false positive rate of algorithm used to predict criminal reoffense
twice as high for Black defendants (Angwin and Larson, 2016)



background

algorithms are used to guide many high-stakes decisions

who should receive a medical treatment?

who should receive a loan?

who should receive bail?

who should receive employment?

recent empirical evidence that these algorithms often have errors that
vary systematically across subgroups of the population

patients assigned to same risk score have substantially different
actual health risks depending on race (Obermeyer et al., 2019)

false positive rate of algorithm used to predict criminal reoffense
twice as high for Black defendants (Angwin and Larson, 2016)



fairness vs. accuracy

algorithms increasingly optimized not only for accuracy but
also “fairness” (equalizing error rates across groups)

what is the tradeoff between fairness and accuracy?

we introduce a “fairness-accuracy frontier” that ranges across
a broad class of preferences/optimization criteria

results characterize how this frontier depends on statistical
properties of the inputs to the algorithm

whether the inputs reveal the group identity
whether the inputs are group-balanced

in paper but will skip in talk: “input design” problem



framework



setup

single designer and population of (non-strategic) subjects

each subject is described by three variables:

- type Y taking values in Y
(e.g. need for medical procedure)

- group G ∈ G = {r , b}
(e.g. race)

- covariate vector X taking values in X
(e.g. image scans, # past hospital visits, blood tests)

X is observed by the designer, Y and G are not directly
observed (but may be revealed by X )

in the population, (Y ,G ,X ) ∼ P
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algorithm

each subject receives a decision d ∈ D = {0, 1}
(e.g. whether the procedure is recommended)

the designer chooses an algorithm

a : X → ∆(D)

for determining (distributions over) decisions based on the
observed covariate vector
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group errors

fix a loss function ` : D × Y × G → R
can interpret ` as measure of inaccuracy or as the disutility of
a given subject

Definition

the error for group g ∈ G given algorithm a is

eg (a) := ED∼a(X ) [` (D,Y , g) | G = g ]

i.e., the average/expected loss for subjects in group g

improving accuracy: lowering er and eb

improving fairness: lowering |er − eb|
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special cases

this approach nests several existing fairness metrics:

example: equality of false positive rates corresponds to
er (a) = eb(a) with

`(d , y) =

{
1 if (d , y) = (1, 0)
0 otherwise

example: algorithm a satisfies equalized odds if

EY

[
EX [a(X ) | G = r ,Y ]− EX [a(X ) | G = b,Y ]

]
= 0.

this corresponds to er (a) = eb(a) with

`(d , y , g) =


P(Y = y)

P(Y = y | G = g)
if d = 1

0 otherwise
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preferences

Definition (fairness-accuracy (FA) dominance)

let >FA be the partial order on R2 satisfying (er , eb) >FA (e ′r , e
′
b) if

er ≤ e ′r , eb ≤ e ′b,︸ ︷︷ ︸
higher accuracy

and |er − eb| ≤ |e ′r − e ′b|︸ ︷︷ ︸
higher fairness

with at least one of these inequalities strict

Definition

a fairness-accuracy preference � is any total order on R2 such
that e � e ′ whenever e >FA e ′
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examples of FA preferences

1 utilitarian/bayes-optimal:

wu(er , eb) = −prer − pbeb

where pr and pb are the proportions of either group

2 egalitarian: first order errors by − |er − eb|, and then break
ties using wu

3 rawlsian/group DRO: first order errors by −max {er , eb},
and then break ties using wu

4 constrained optimization (e.g., Hardt et al., 2016):

min
a∈AX

prer (a) + pbeb(a) s.t. |er (a)− eb(a)| ≤ ε
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fairness-accuracy frontier

Definition

the feasible set given X is

E (X ) := {(er (a) , eb(a)) : a ∈ AX}

where AX is the set of all algorithms a : X → ∆(D)

Definition

the fairness-accuracy frontier given X is

F (X ) :=
{
e ∈ E (X ) : @ e ′ ∈ E (X ) s.t. e ′ >FA e

}
includes optimal points across all fairness-accuracy preferences



fairness-accuracy frontier

Definition

the feasible set given X is

E (X ) := {(er (a) , eb(a)) : a ∈ AX}

where AX is the set of all algorithms a : X → ∆(D)

Definition

the fairness-accuracy frontier given X is

F (X ) :=
{
e ∈ E (X ) : @ e ′ ∈ E (X ) s.t. e ′ >FA e

}
includes optimal points across all fairness-accuracy preferences



characterizing the

fairness-accuracy frontier



feasible set of group error pairs

lemma: for any X , the feasible set E(X ) is compact and convex

(if X is finite, it is a convex polygon)

er

eb



important points

group-optimal points:

RX := arg min
e∈E(X )

er BX := arg min
e∈E(X )

eb

fairness-maximizing point:

FX := arg min
e∈E(X )

|er − eb|

(break all ties in favor of aggregate accuracy)
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group-skewed vs group-balanced

Definition

covariate vector X is

r-skewed if er < eb at RX and er ≤ eb at BX

“group r ’s error is lower both at group r ’s favorite point and
also at group b’s favorite point”

b-skewed if eb < er at BX and eb ≤ er at RX

group-balanced otherwise

group-skew can emerge in practice (for example) if the inputs in X
are systematically more informative about Y for one group
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characterization of fairness-accuracy frontier

Theorem

F (X ) is lower boundary of E (X ) between

RX and BX if X is group-balanced

(= usual Pareto frontier!)
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strong fairness-accuracy conflict

corollary: there exist e, e ′ ∈ F(X ) satisfying

er ≤ e ′r , eb ≤ e ′b, |er − eb| > |e ′r − e ′b|

e.g., e = (1/3, 1/4), e ′ = (1/2, 1/2)

if and only if X is group-skewed

er

eb

RX

BX
F X
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eb
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“I have a policy proposal, which would decrease accuracy for 
both groups, but increase fairness.”

“Are the inputs to your algorithm group-balanced?”

POLICYMAKER

ACADEMIC
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ACADEMIC
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“I have a policy proposal, which would decrease accuracy for 
both groups, but increase fairness.”

“Are the inputs to your algorithm group-balanced?”

POLICYMAKER

ACADEMIC

“No, they are group-skewed.”

POLICYMAKER

“If you care sufficiently about fairness relative to accuracy, 
then your proposal may be optimal for your goals.”

ACADEMIC



which of group balance and group skew is more common?

difficult to anticipate without an empirical analysis

why might X be group-balanced?

suppose X has a group-dependent meanings

e.g., frequent moves signal high creditworthiness for high-income
borrowers but low creditworthiness for low-income borrowers

maximizing accuracy for the high-income group leads this group to
have the lower error (and vice versa)

why might X be group-skewed?

suppose X is asymmetrically informative

e.g., medical data is recorded more accurately for high-income
patients than low-income patients

best algorithm coincides for both groups and implies a lower error
for high-income patients
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generalizations

beyond absolute difference

results extend when unfairness is measured as |φ(er )− φ(eb)|
where φ is some continuous strictly increasing function

if φ is log, then this corresponds to evaluating fairness using
the ratio of errors rather than their difference

different loss functions for evaluating fairness and accuracy

qualitative result extends whenever the two loss functions
aren’t “directly opposed”

group-balance generalizes to whether FX belongs to usual
Pareto frontier

when this condition is satisfied, then the fairness-accuracy
frontier is identical to the usual Pareto frontier
otherwise, the fairness-accuracy frontier is the union of the
Pareto frontier and a positively-sloped sequence of lines



generalizations

beyond absolute difference

results extend when unfairness is measured as |φ(er )− φ(eb)|
where φ is some continuous strictly increasing function

if φ is log, then this corresponds to evaluating fairness using
the ratio of errors rather than their difference

different loss functions for evaluating fairness and accuracy

qualitative result extends whenever the two loss functions
aren’t “directly opposed”

group-balance generalizes to whether FX belongs to usual
Pareto frontier

when this condition is satisfied, then the fairness-accuracy
frontier is identical to the usual Pareto frontier
otherwise, the fairness-accuracy frontier is the union of the
Pareto frontier and a positively-sloped sequence of lines



special case: when group identity is an input

Proposition

if G is an input in X , then E(X ) is a rectangle with sides parallel
to axes and F(X ) is the line segment from RX = BX to FX

er

eb

45�

E(X)

RX = BX FX

frontier is rawlsian: worse-off group gets best feasible error
(no matter which optimization problem we solve)
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what happens when G is added as an input?

er

eb

45�

E⇤(X)E(X)

FX

BX

RX

result (informal): for any designer preference (in our permitted
class), access to G reduces the error for the worse-off group.

not true for the other group
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in paper: input design

sometimes the algorithm is set by an agent cares only about
accuracy, inputs are constrained by a regulator

we formulate a problem of “input design”:

designer chooses a garbling of the covariates
decision-maker chooses an algorithm (based on this garbling)
to maximize accuracy

how limiting is this for the designer? are there garblings that
can implement the designer’s favorite (unconstrained) point?

ask whether the optimal garbling could involve completely
banning a covariate (such as group identity)

if X is group-balanced, then banning group identity make
every designer strictly worse off
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related literature

huge literature on algorithmic fairness in CS

Dwork et. al (2012), Hardt et al. (2016), Kleinberg et al. (2017),
Chouldechova (2017), Roth and Kearns (2019), and many more

key differences/contributions

1 characterize the fairness-accuracy frontier (in contrast to
focusing on a specific optimization problem)

2 formulate problem of choosing inputs as one of “information
design” (final input-design section)

Kamenica & Gentzkow (2011), Bergemann & Morris (2019)

recent empirical work in economics:

Obermeyer, Powers, Vogeli, Mullainathan (2019), Arnold, Dobbie, and
Hull (2021), Fuster, Goldsmith-Pinkham, Ramadorai, Walther (2021)
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Conclusion

framework for evaluating the accuracy/fairness tradeoffs of
algorithms

characterized the fairness-accuracy frontier over different
designer preferences for how to trade off these criteria

explained how certain statistical properties of the algorithm’s
inputs impact the shape of this frontier

in some cases (e.g., when the inputs are group-balanced),
there are conclusions/policy recommmendations that hold for
all designer preferences in a broad class



thank you



compare X to (X ,G )

result (informal): banning G uniformly worsens the Pareto frontier if and
only if X is group-balanced.

45�

eb

BX

RX

er

E(X)

FX

(a) group-balanced X

takeaways:

when X is group-balanced, all designers strictly benefit from
allowing the algorithm to condition on G

this is true even for an Egalitarian designer: disparate treatment
may be necessary to remove disparate impact



compare X to (X ,G )

result (informal): banning G uniformly worsens the Pareto frontier if and
only if X is group-balanced.

45�

eb

BX

RX

er

E(X)

er

eb

45�

E⇤(X)E(X)

FX

FX

BX

RX

(a) group-balanced X (b) group-skewed X

takeaways:

when X is group-balanced, all designers strictly benefit from
allowing the algorithm to condition on G

this is true even for an Egalitarian designer: disparate treatment
may be necessary to remove disparate impact



compare X to (X ,G )

result (informal): banning G uniformly worsens the Pareto frontier if and
only if X is group-balanced.

45�

eb

BX

RX

er

E(X)

er

eb

45�

E⇤(X)E(X)

FX

FX

BX

RX

(a) group-balanced X (b) group-skewed X

takeaways:

when X is group-balanced, all designers strictly benefit from
allowing the algorithm to condition on G

this is true even for an Egalitarian designer: disparate treatment
may be necessary to remove disparate impact



compare X to (X ,X ′) when X reveals G
result (informal): banning X ′ uniformly worsens the Pareto frontier if
and only if X ′ reduces the error for the worse-off group.

45�

E(X)

eb

er

E(X,X 0)

(a) X 0 reduces group b’s error

takeaway: active policy debate regarding whether to ban test scores in
admissions decisions.

so long as G is permissible, then excluding test scores makes all
designers worse off

if G is not a permitted input (e.g., California), then it can be
strictly optimal to ban X ′ (see example in paper)
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strictly optimal to ban X ′ (see example in paper)
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what happens when the designer only
controls the inputs?
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example: drop an input



example: coarsening

(Chan and Eyster, 2003)
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input design: feasible and pareto sets

let fT denote the utilitarian-optimal algorithm given T

Definition

the feasible set under input design given X is

E∗ (X ) := {e (fT ) : T is a garbling of X}

the fairness-accuracy frontier under input design given X is

F∗ (X ) :=

e ∈ E∗ (X ) : no e ′ ∈ E∗ (X ) s.t. e ′ �FA e︸ ︷︷ ︸
e is FA-undominated in E∗(X )


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how powerful is input design?
let e0 be the utilitarian’s best payoff given no information

define H := {(er , eb) : prer + pbeb ≤ e0}
lemma: E∗(X ) = E(X ) ∩ H

(see also Alonso and Camâra, 2016)

=⇒ any point that is feasible given X and in the halfspace H can
be implemented using some garbling of X
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utilitarian-optimal point
given no information
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how powerful are informational constraints?

Proposition

(a) If X is group-balanced, then F (X ) = F∗ (X ) iff RX ,BX ∈ H

(b) If X is g-skewed, then F (X ) = F∗ (X ) iff GX ,FX ∈ H
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eb eb
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RX

BXE⇤(X)

er
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H

E⇤(X)

er

RX

FX
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takeaway: under weak conditions, designer can implement favorite
(unconstrained) outcome by designing the algorithmic inputs



will the designer want to exclude
inputs?



add/ban covariates?

regulatory question: should certain inputs be banned?

some group identities are already banned (e.g. race, religion
for hiring or bank loans)
other covariates increasingly prohibited due to fairness
concerns (e.g. universities excluding test scores)

we can study this using our framework

X is the permitted part, X ′ is the input in question

question: how does the input-design frontier F∗(X ) compare
to F∗(X ,X ′)?
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excluding X ′ can be strictly optimal

Y ∈ {0, 1} with P(Y = 1 | G = g) = 1/2 for both groups g

X is a null signal, while X ′ ∈ {0, 1} is a binary signal where

X ′ = Y with probability 1 if G = r
X ′ = Y with probability 0.6 if G = b

so X is more informative about type for group r

the designer is Egalitarian (payoff is −|er − eb|)



excluding X ′ can be strictly optimal

sending the null signal X leads to a payoff of |0.5− 0.5| = 0.

45�

eb

er

(0.5, 0.5)

any information provided about X ′ will be used by the agent to
improve accuracy

but this information decreases r ’s error more than b’s error,
contributing to a larger gap

the designer’s payoffs are strictly negative when any information
about X ′ is provided to the agent
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uniform worsening of the frontier

at the other extreme. . .

Definition

say that excluding X ′ given X uniformly worsens the frontier if
every point in F∗(X ) is FA-dominated by a point in F∗(X ,X ′)

↪→ every designer strictly prefers to send information about X ′

↪→ excluding X ′ cannot be justified by a fairness-accuracy
preference



excluding group identity

first compare X to (X ,G )

result: suppose RX ,BX ∈ H. excluding G uniformly worsens the frontier
if and only if X is group-balanced
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(a) group-balanced X
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takeaways

when X is group-balanced, all designers benefit from sending
some information about G

conditioning on G means applying an information policy that
is asymmetric across groups

result suggests that disparate treatment may be necessary
to preclude disparate impact

echos previous findings in the statistical discrimination
literature (e.g., Chan and Eyster, 2003)



excluding a covariate when group identity is known

compare X to (X ,X ′) when X reveals G

definition: say that X ′ is decision-relevant over X for group g if
there are realizations (x , x ′) and (x , x̃ ′) of (X ,X ′) where

{1} = argmin
d∈D

E[`(a,Y , g) | X = x ,X ′ = x ′,G = g ]

while

{0} = argmin
d∈D

E[`(a,Y , g) | X = x ,X ′ = x̃ ′,G = g ]

this is a weak condition:

says only that the additional information in X ′ can change the
optimal assignment for some individual in group g
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excluding a covariate when group identity is known

result: suppose X reveals G , and let X be g -skewed.

excluding X ′ given X uniformly worsens the frontier ⇐⇒ X ′ is
decision-relevant over X for group g ′ 6= g .
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(a) X 0 reduces group b’s error
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takeaways

there is an active debate regarding whether to ban test scores in
admissions decisions

since test scores are likely to be decision-relevant for both groups,
our result suggests that:

so long as G is permissible, then excluding test scores makes
all designers worse off

if G is not a permitted input (as is the case in California), then
it can be strictly optimal to ban X ′ (as in previous example)



nuances/qualifications

our results depend critically on our assumption that the
designer has access to a fully flexible garbling of the inputs X

do not imply a ranking between sending X ′ (un-garbled)
versus excluding it


